Development, validation and benchmarking of LPPic for **ExB** discharges.

A. Tavant, V. Croes, R. Lucken, T. Charoy, A. Bourdon, P. Chabert

ExB workshop, PPPL, November 1-2, 2018

Introduction

What is **LPPic**?

- Particle in Cell simulation code of magnetized plasma
- ► Started in 2014
- Particular care taken on computing performance and model validity

Plasma for space propulsion

Hall effect Thruster and Pegases

Hall Effect Thruster

Gridded Thruster: Pegases

LPPic: presentation PIC loop

Standard Particle in Cell simulation:

- Explicit
- Electrostatic
- Numerous gases
 - Helium
 - Argon
 - Krypton
 - Xenon

LPPic: presentation

Numerical methods

- ► **Electrostatic** ⇒ Solving Poisson Equation (*Hypre* or *PetsC*)
- ▶ Particle Motion : Boris scheme ¹ or Leapfrog ²
- Cloud-in-Cell : bi-linear interpolation
- Collision Monte-Carlo algorithm³ using LXcat⁴ data base

¹ Boris 1970.

² Birdsall and Langdon 1985.

³ Vahedi and Surendra 1995.

⁴ Phelps 2005.

LPPic: presentation

Simulation cases

Simulation case	HET: $R - \theta$ (case 2b)	HET: $Z - \theta$ (case 2a)	Pegases
	BC 500 Blood	, y x z	$ \begin{array}{c c} \text{RF antenna} & \phi = 0 & \text{Acceleration grid} \\ & & &$
Computational time with 360 CPUs	10 μ s $ ightarrow$ 50 h	20 μ s $ ightarrow$ 2 weeks	$40 \mu s ightarrow 20 h$

Verification & Validation

LPPic: Accuracy

Verification

assessing the **numerical accuracy** of the solution to a computational model.⁵

- Convergence of a solver
- Unit Test or Test cases

Validation

addresses the physics modeling accuracy of a simulation by comparing it with reality (experiments, theory).⁵

- Mezzanine tests
- Benchmarks

Oberkampf and Trucano 2008.

Unit tests

- Poisson solver
- Particle Pusher
- Boundary conditions
- Monte-Carlo Collision
- Diagnostics
- **.**..

Verify:

- physical results vs. analytical solutions
- validity domain of the module
- error (e.g $\mathcal{O}(\Delta_x)$, etc.)

Unit tests

- Poisson solver
- Particle Pusher
- Boundary conditions
- Monte-Carlo Collision
- Diagnostics
- **.**..

Figure: Verification of the Boris scheme

Unit tests

- Poisson solver
- Particle Pusher
- Boundary conditions
- Monte-Carlo Collision
- Diagnostics
- **.**..

- Fast (even on PCs)
- Systematic (with Continuous Integration tools)

Back reproducibility: Can we reproduce previous results?

- "Verify" all of the code
- ▶ We have three cases (HET R- θ , Z- θ , Pegases)
- ► Longer to run (few days), need cluster

LPPic: Accuracy

Validation: comparing the code results with...

Theory: Easier

- Simplified cases can be simulated
- Can validate parts of the code
- ► [M. Turner (2016) *PSST*]

Experiments: more Difficult

- Some physics is missing
- Large uncertainties
- "What to compare ?"

LPPic: Accuracy

Validation: comparing the code results with...

Theory: Easier

- Simplified cases can be simulated
- Can validate parts of the code
- [M. Turner (2016) PSST]

Experiments: more Difficult

- Some physics is missing
- Large uncertainties
- "What to compare ?"

Other codes: Intermedate

- Easy to compare the results
- What if the results differ ?

LPPic: Accuracy

Comparing with other codes: Benchmark 1D CCP Benchmarks [M. Turner (2013) *PoP*]

- 5+ independent PIC codes
- 4 cases with different parameters
- Quite complet:
 - ▶ Poisson (1D)
 - Pusher (Leapfrog)
 - Wall boundary conditions
 - MCC ionization (He)
- ▶ Validated: error < 5%</p>

Figure: Results of the benchmarks n° 1 & 2

LPPic: Accuracy

Comparing with other codes: Benchmark

2D CCP Benchmarks (currently developed) 5

- Similare to 1D Benchmark :
 - ► Poisson (2D)
 - Pusher (Leapfrog)
 - Wall boundary conditions
 - MCC ionization

Turner et al., GEC 2018

Figure: Proposition for the 2D CCP He benchmark

LPPic: Accuracy

How to Validate new results?

When:

- ▶ No theory describe the whole simulation
- ▶ The models implemented are not validated

LPPic: Accuracy

How to Validate new results?

When:

- No theory describe the whole simulation
- ► The models implemented are not validated

Idea: validate parts of the results with quantitative comparison with theory

LPPic: Accuracy

LANDMARK case 2B:

 $R-\theta$ plan of an HET

 2D simulation of a steady state discharge (Axial boundaries + MCC)

Results of the 2D PIC HET simulation 7,8

⁷ V. Croes (2017), *PSST*

⁸ A. Tavant (2018), *PSST*

LPPic: Accuracy

LANDMARK case 2B:

 $R-\theta$ plan of an HET

- 2D simulation of a steady state discharge (Axial boundaries + MCC)
- Observed sheath: coherent with Child-Lamguir law

Results of the 2D PIC HET simulation ^{7,8}

⁸ A. Tavant (2018), *PSST*

⁷ V. Croes (2017), *PSST*

LPPic: Accuracy

LANDMARK case 2B:

 $R-\theta$ plan of an HET

 2D simulation of a steady state discharge (Axial boundaries + MCC)

 Oscillations: Coherent with Ion Acoustic Wave

Results of the 2D PIC HET simulation ^{7,8}

⁸ A. Tavant (2018), *PSST*

⁷ V. Croes (2017), *PSST*

LPPic: Accuracy

LANDMARK case 2B:

 $R-\theta$ plan of an HET

 2D simulation of a steady state discharge (Axial boundaries + MCC)

Anomalous mobility: agreement with fluid and kinetic theory

Results of the 2D PIC HET simulation 7,8

⁷ V. Croes (2017), *PSST*

⁸ A. Tavant (2018), *PSST*

Conclusion

LPPic:

- Versatile and efficient 2D PIC/MCC code
- Can be used for parametric studies
- Validated on 1D Benchmark: Need 2D and/or magnetized Benchmark

LANDMARK:

- Results obtained for case 2B with MCC and axial boundaries
- ▶ Presentation case $2A \rightarrow talk of T$. Charoy
- Validate the results: quantitative comparison with same conditions

The end

Thank you for your attention!

Life is like a PIC simulation

Trevor Lafleur

- Birdsall, C. K. and A. B. Langdon (1985). *Plasma Physics via Computer Simulation*. New-York: McGraw-Hill.
- Boris, J. P. (1970). "Relativistic plasma simulation-optimization of a hybrid code". In: Proceedings of the 4th Conference on Numerical Simulation of Plasmas. Naval Res. Lab. Washington DC, pp. 3–67.
- Oberkampf, William L. and Timothy G. Trucano (2008). "Verification and validation benchmarks". In: *Nuclear Engineering and Design* 238.3. Benchmarking of CFD Codes for Application to Nuclear Reactor Safety, pp. 716 –743.
- Phelps, A. V. (2005). "Compilation of atomic and molecular data". In:
 - Vahedi, V. and M. Surendra (1995). "A Monte Carlo collision model for the particle-in-cell method: applications to argon and oxygen discharges". In: Comp. Phys. Commun. 87.179.